

Economic Assessment of Energy Efficiency and "10/20" Renewable Energy Goals prepared for the Western Regional Air Partnership

Selected Results

Presented to

NREL Energy Analysis Forum

May 30, 2002

Presented by Juanita Haydel

Strategic Advantage.

Compelling Results.

WRAP/AP2 Study Objectives

- Examine implications of renewable energy and energy efficiency goals for RH SO2 program
- Economic assessment
 - Renewable energy mix
 - Cost implications
 - Emissions impacts
 - Regional economic impacts (employment, GRP, income)
- Individual state and tribal impacts

Analytic Framework

- ∠ Uses ICF's Integrated Planning Model (IPM™)
- Regional economic Impacts -- REMI model.

IPM® Model Regions

Renewables Dispatch in IPM

- Intermittent dispatch of wind and solar units is captured using seasonal generation profiles
- Reduced capacity credits for wind and solar captured through contribution to reserve margin
- Geothermal, landfill gas and biomass units based on economic dispatch
- Vintages of technologies modeled

Key Assumptions

- Starting point: WRAP/MTF study
- Updated assumptions on renewable resources
- Baseline regulatory specifications
 - Annex Milestones/Cap and Trade
 - 1990 CAAA NOx and SO2 requirements
 - Northeast NOx SIP CALL
- Transmission between regions explicitly modeled -new lines can be constructed.

Wind Assumptions

Proposed Assumptions for Wind Supply Options				
			Overnight	Fixed
Available	Wind	Capacity	Capital Cost	O&M Cost
Years	Class	Factor	(2001\$/kW)	(2001 \$/kW-Yr)
2000-2009	6	40%	1000	24
2000-2009	5	35%	1000	22
2000-2009	4	30%	1000	19
2010-2030	6	46%	800	13
2010-2030	5	41%	885	12
2010-2030	4	36%	910	11

Wind Assumptions

- Methodology for capacity distribution by wind class and cost scalar based on Clean Energy Future study
 - Cost Scalar 1.0: Wind capacity meeting 10% of region's generation or 10% of available wind capacity, whichever is lower
 - Cost Scalar 1.2: 10% 15% of region's generation
 - Cost Scalar 1.4: 15% 20% of region's generation
 - Cost Scalar 1.6: Remaining wind capacity
- ∠ Lowest scalar first applied to available Class 6, then Class 5 and Class 4
- Transmissions costs added for interior west based on WGA transmission study

Selected Scenarios

- Regional SO₂ trading program and MTF renewables assumptions (no incremental renewables)
- SO₂ Trading Program with updated renewables assumptions (Core)
- Core Case with "10/20 goals" (10/20)
 - 10 percent of the GCVTC regional power needs by 2005
 - 20 percent of the regional power need by 2015.
- ∠ Core Case with 10/20 and energy efficiency (EE)

ICFRenewables Resource Penetration Under the Core

- About 15 GW of new wind capacity could be developed in the West by 2018 even without 10/20 goals based on the lower wind cost technology assumptions used here.
 - The growth in new wind capacity could displace approximately 9 GW of new fossil capacity by 2018
- Provides emission reductions and lowered compliance cost in meeting the 10/20 goals.
 - 68 billion kWh of wind generation in 2015 representing 50% of RPS requirement

ICF Emissions Benefits of Increased Renewables and E2

- Renewables provide 1 % savings in NOx (8 MTons) and a 10 percent savings in CO2 (39 MMTonnes) in 2018
 - Relative to no renewables case/ SO2 program is in place.
- Renewables/E2 reductions are about a 2.5% reduction in NOx and 14 % savings in CO2 in 2018
- Annex milestones of the regional SO2 program are in place; thus, no projected SO2 emissions reductions in the region.
 - They do reduce the trading price of SO2 allowances.

Costs Implications

- Increased production costs from 10/20 in 2018 on the order of \$400 million relative to the Core Case where renewables penetrate.
- Production and Net Costs Savings due to energy efficiency are about \$1.6 billion.